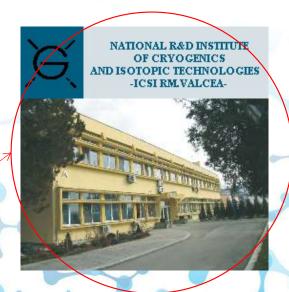


Hydrogen – for smart cities

Dr. Ioan Iordache, ICSI Bussiness Director, INCD TCI ICSI Rm. Valcea



INCD TCI ICSI Rm. Valcea / Romanian Association for Hydrogen Energy

www.icsi.ro

National Center for Hydrogen and Fuel Cell

- 2009 National Center for Hydrogen and Fuel Cell has been developed due to results, knowledge and expertise acquired in the research projects done in the renewable energy field.
- Member of Joint Undertaking on Hydrogen and Fuel Cell, a unique public-private partnership supporting research, technological development and demonstration in the field of fuel cells and hydrogen-based energy technologies in Europe.
- 2012 Hydrogen Research Group within ICSI Energy leads to the foundation of the Romanian Association for Hydrogen Energy.
- August 2014 National Center for Hydrogen and Fuel Cells becomes a National Interest Facility, being a support installation with experimental and testing equipment to address a wide range of research into the use of hydrogen for energy purposes.
- The entire R&D has been completed both instrumentally and from human resources capabilities by developing two other facilities research: Low Temperature Laboratory CRYO-HY (2012) and Energy Storage Laboratory ROM-EST (2015).

Nr. Projecte Competitie Sume estimate (mii Euro) Perioada MENER (sp. C), (160+90+90+*) 340 2000-2004 MATNAN TECM (sp. 5), (27+47+33) 107 CERES, (70+43) 113 Programe Nucleu Planul Sectorial Total: 11 Total: 928 (< 1 mil. Euro) 325 CEEX 2005 (M1) • Sume initiale propuse 2005-2006 CEEX 2006 (M1+M3) (11+2) 13 Total: 16 0,5 mil. Euro/proiect PNCDI II 2007 (AT 2 +7) • Sume initiale propuse 2007-2008 PNCDI II 2008 (AT 2 +3+7) 9 0,5 mil. Euro/proiect Total: 21

Why to Rm. Valcea?

	Nr.	Project	-	Call
	1	Develop and implement new solutions to improve performance of	INCDTCI-ICSI Rm.	CEEX 2005
		fuel cell proton exchange membrane	Valcea,	Module 1
	2	Develop a system for hydrogen production at low cost by the	INCDTCI-ICSI Rm.	CEEX 2006
		method of proton exchange membrane electrolysis	Valcea,	Module 1
	3	Heat and water management systems for PEM fuel cells	INCDTCI-ICSI Rm.	CEEX 2006
			Valcea	Module 1
	4	Development of an integrate production of hydrogen and fertilizer	INCDTCI-ICSI Rm.	PNCDI II 2-Energy
\rightarrow		for the soil by use of biomass and residues	Valcea,	2007
	5	Regenerative electrolyzer-fuel cell energy converter, architecture	INCDTCI-ICSI Rm.	PNCDI II 2-Energy
		design and implementation	Valcea,	2007
	6	Innovative system for power using high temperature PEM fuel cells	INCDTCI-ICSI Rm.	PNCDI II 2-Energy
		and hydrogen produced by reforming of acetic acid	Valcea,	2008
	7	Environmental impact analysis in the context of the widespread	INCDTCI-ICSI Rm.	PNCDI II 3-
		use of hydrogen-based technologies	Valcea,	Environ. 2008
				III/

~20% ICSI Rm. Valcea

How new is the hydrogen and fuel cells?!

In 1766–81, Henry Cavendish was the first to recognize that hydrogen gas was a substance.

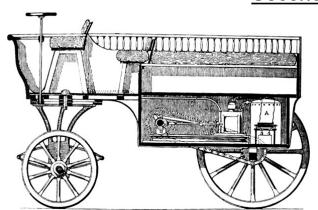
In 1838, The London and Edinburgh Philosophical Magazine and Journal of Science William Grove (physicist and barrister) wrote about the development of his first fuel cells.

In 1938 - Rhine-Ruhr, the first 240 km (150 mi) hydrogen pipes.

In 1939, Francis Thomas Bacon (British engineer) successfully developed a 5 kW stationary fuel cell.

How new is the hydrogen cars?!

First hydrogen car!


Francois Isaac de Rivaz **1807**, France, Patent

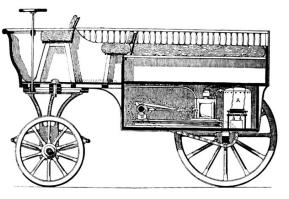
Second hydrogen car!

Lenoir's "Hippomobile" **1860**, France, Patent

Hydrogen, generated from water via electrolysis!

How new is the hydrogen car?!

First hydrogen car! ~


Francois Isaac de Rivaz 1807, France, Patent

Second hydrogen car!

Lenoir's "Hippomobile"

1860, France, Patent

Hydrogen, generated from water via electrolysis!

<u>First gasoline</u> automobile, <u>1885/86</u> powered by an internal combustion engine. (Karl Friedrich Benz)

Sources: www.H2mobility.org

Hydrogen production in Romania

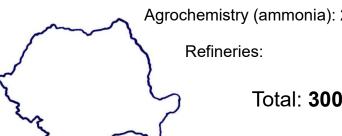
No.	Company	utilization	Obs.
1	Amonil (Slobozia)	ammonia	Captive
2	Astra (Ploieşti)	refinery	Captive
3	Arpechim (Piteşti)	refinery	Captive
4	Azochim (Piatra Neamţ)	ammonia	Captive
5	Azomureş (Tg. Mureş)	ammonia	Captive
6	Chimcomplex (Borzeşti)	Chlor-alkali	By-product
7	G. I. P.(Brăila)	?	?
8	DoljChim (Craiova)	ammonia	Captive
9	Donau Chem (Tg. Măgurele)	ammonia	Captive
10	Nitramonia (Făgăraş)/Viromet (Victoria)	ammonia	Captive
11	Oltchim/Chimcomplex (Rm. Vâlcea)	Chlor-alkali	By-product
12	Petrotel (Ploieşti)	refinery	Captive
13	Sofet (Bacău)	ammonia	Captive

Romania is included in the small group of countries (under thirty) that traditionally produce hydrogen.

This hydrogen is produced by:

- the catalytic reforming of hydrocarbons (especially natural gas) or
- the electrolysis of brine (NaCl).

Hydrogen for cities mobility!



Hydrogen, production capacity in Romania

Agrochemistry (ammonia): 230 000 t H₂/y

70 000 t H₂/y

Total: 300 000 t H₂/y

Hydrogen

1 kg H₂/100 km

100 kg H₂/y

Chimcomplex, Rm. Valcea: 2500 t H₂/an

FCEY blue

Hydrogen for cities mobility!

1 t $H_2 \approx 10$ cars per year

Year	Romanian fleet	No. of cars	New cars
2019	8,749,390	6,901,236	289,520
2015	6,600,325	5,153,182	209,676

Hydrogen, production capacity in Romania

Agrochemistry (ammonia): 230 000 t H₂/y

Refineries: $70~000~t~H_2/y$

Total: **300 000 t H₂/y**

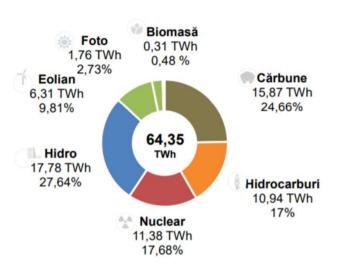
3 000 000 cars (FCEVs)/y

2 500 cars (FCEVs)/y

FCEV

100 kg H₂/an

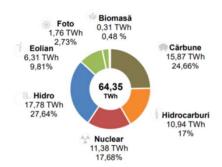
1 kg H₂/100 km



Chimcomplex, Rm. Valcea: 2500 t H₂/an

ROMANIAN ASSOCIATION FOR HYDROGEN ENERGY

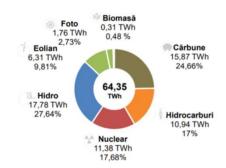
Hydrogen for cities energy need!



	Grup.	<u>P</u> net. (MW)
Carbune/coal	26	4 103.30
Hidrocarburi/hydrocarbons	147	2 650.14
Ape/hydro	881	6 312.48
Eolian/wind	116	2 979.96
Biomass/Biogaz	57	125.39
Solara/solar	625	1 309.60
Geotermala/geothermal		0.00
Total	1855	18 780.87

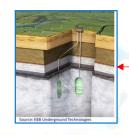
	Amount of energy (lower heating value)	1 t H ₂	33,3 MWh	Z
	Energy consumption to produce hydrogen	1 t H ₂	± 55 MWh	
		1 MW	± 18 kg/h H ₂	

Hydrogen for cities energy need!


	<u>Grup.</u>	<u>P</u> net. (MW)
Carbune/coal	26	4 103.30
Hidrocarburi/hydrocarbons	147	2 650.14
Ape/hydro	881	6 312.48
Eolian/wind	116	2 979.96
Biomass/Biogaz	57	125.39
Solara/solar	625	1 309.60
Geotermala/geothermal		
Total	1855	18 780.87

Am	ount of energy (lower heating value)	1 t H ₂	33,3 MWh
Enc		1 t H ₂	± 55 MWh
Energy consumption	ergy consumption to produce hydrogen	1 MW	± 18 kg/h H ₂

	CO ₂ emissions	CO ₂ emissions
	Electricity	Hydrogen
Zero carbon/renewable	0 t CO ₂ /MWh	0 t CO ₂ /t H ₂
Y 2019	0,91 t CO₂/MWh	50 t CO ₂ /t H ₂
Y 2025	0,62 t CO2/MWh	34 t CO ₂ /t H ₂
Current reforming technology	0,22 t CO2/MWh	12 CO ₂ /t H ₂


Hydrogen for cities energy need!

	Grup.	<u>P</u> net. (MW)
Carbune/coal	26	4 103.30
Hidrocarburi/hydrocarbons	147	2 650.14
Ape/hydro	881	6 312.48
Eolian/wind	116	2 979.96
Biomass/Biogaz	57	125.39
Solara/solar	625	1 309.60
Geotermala/geothermal		
Total	1855	18 780.87

	CO ₂ emissions	CO ₂ emissions
	Electricity	Hydrogen
Zero carbon/renewable	0 t CO ₂ /MWh	0 t CO ₂ /t H ₂
Y 2019	0,91 t CO ₂ /MWh	50 t CO ₂ /t H ₂
Y 2025	0,62 t CO2/MWh	34 t CO ₂ /t H ₂
Current reforming technology	0,22 t CO2/MWh	12 CO ₂ /t H ₂

Large scale zero carbon hydrogen production and seasonal underground storage

www.h2romania.ro

Thank you!

Contact:

iordache.ioan@icsi.ro

